225 research outputs found

    The Effect of Movement Therapy on Negative Symptoms in Schizophrenia - A Multicenter Randomized Controlled Trial

    Get PDF
    Objective: Negative symptoms of patients with Schizophrenia are resistant to medical treatment or conventional group therapy. Understanding schizophrenia as a form of disembodiment of the self, a number of scientists have argued that the approach of embodiment and associated embodied therapies, such as Dance and Movement Therapy (DMT) or Body Psychotherapy (BPT), may be more suitable to explain the psychopathology underlying the mental illness and to address its symptoms. Hence the present randomized controlled trial (DRKS00009828, http://apps.who.int/trialsearch/) aimed to examine the effectiveness of manualized movement therapy (BPT/DMT) on the negative symptoms of patients with schizophrenia. Method:A total of 68 out-patients with a diagnosis of a schizophrenia spectrum disorder were randomly allocated to either the treatment (n = 44, 20 sessions of BPT/DMT) or the control condition [n = 24, treatment as usual (TAU)]. Changes in negative symptom scores on the Scale for the Assessment of Negative Symptoms (SANS) were analyzed using Analysis of Covariance (ANCOVA) with Simpson-Angus Scale (SAS) scores as covariates in order to control for side effects of antipsychotic medication. Results:After 20 sessions of treatment (BPT/DMT or TAU), patients receiving movement therapy had significantly lower negative symptom scores (SANS total score, blunted affect, attention). Effect sizes were moderate and mean symptom reduction in the treatment group was 20.65%. Conclusion:The study demonstrates that embodied therapies, such as BPT/DMT, are highly effective in the treatment of patients with schizophrenia. Results strongly suggest that BPT/DMT should be embedded in the daily clinical routine

    ChromID® CARBA Agar Fails to Detect Carbapenem-Resistant Enterobacteriaceae With Slightly Reduced Susceptibility to Carbapenems

    Get PDF
    After first detections of carbapenemase-producing Enterobacteriaceae (CPE) in animals, the European Union Reference Laboratory for Antimicrobial Resistance has provided a protocol for the isolation of carbapenemase-producingEscherichia(E.)colifrom cecum content and meat. Up to now, only few isolates were recovered using this procedure. In our experience, the choice of the selective agar is important for the efficacy of the method. Currently, the use of the prevailing method fails to detect CPE that exhibit a low resistance against carbapenems. Thus, this study aims to evaluate the suitability of selective media with antibiotic supplements and commercial ChromID(R)CARBA agar for a reliable CPE detection. For comparative investigations, detection of freeze-dried carbapenemase-resistant bacteria was studied on different batches of the ChromID(R)CARBA agar as well as on MacConkey agar supplemented with 1 mg/L cefotaxime and 0.125 mg/L meropenem (McC+CTX+MEM). The suitability of the different media was assessed within a time of 25 weeks, starting at least six weeks before expiration of the media. Carbapenem-resistant isolates exhibiting a serine-based hydrolytic resistance mechanism (e.g.,bla(KPC)genes) were consistently detected over 25 weeks on the different media. In contrast, carbapenemase producers with only slightly reduced susceptibility and exhibiting a zinc-catalyzed activity (e.g.,bla(VIM),bla(NDM), andbla(IMP)) could only be cultivated on long-time expired ChromID(R)CARBA, but within the whole test period on McC+CTX+MEM. Thus, ChromID(R)CARBA agar appears to be not suitable for the detection of CPE with slightly increased minimum inhibitory concentrations (MIC) against carbapenems, which have been detected in German livestock and thus, are of main interest in the national monitoring programs. Our data are in concordance with the results of eleven state laboratories that had participated in this study with their ChromID(R)CARBA batches routinely used for the German CPE monitoring. Based on the determined CPE detection rate, we recommend the use of McC+CTX+MEM for monitoring purposes. This study indicates that the use of ChromID(R)CARBA agar might lead to an underestimation of the current CPE occurrence in food and livestock samples

    Liver transplantation in glycogen storage disease type I

    Get PDF
    Glycogen storage disease type I (GSDI), an inborn error of carbohydrate metabolism, is caused by defects in the glucose-6-transporter/glucose-6-phosphatase complex, which is essential in glucose homeostasis. Two types exist, GSDIa and GSDIb, each caused by different defects in the complex. GSDIa is characterized by fasting intolerance and subsequent metabolic derangements. In addition to these clinical manifestations, patients with GSDIb suffer from neutropenia with neutrophil dysfunction and inflammatory bowel disease. With the feasibility of novel cell-based therapies, including hepatocyte transplantations and liver stem cell transplantations, it is essential to consider long term outcomes of liver replacement therapy. We reviewed all GSDI patients with liver transplantation identified in literature and through personal communication with treating physicians. Our review shows that all 80 GSDI patients showed improved metabolic control and normal fasting tolerance after liver transplantation. Although some complications might be caused by disease progression, most complications seemed related to the liver transplantation procedure and subsequent immune suppression. These results highlight the potential of other therapeutic strategies, like cell-based therapies for liver replacement, which are expected to normalize liver function with a lower risk of complications of the procedure and immune suppression

    Prevalence of Antibodies Against Virus-Like Particles of Epidermodysplasia Verruciformis-Associated HPV8 in Patients at Risk of Skin Cancer

    Get PDF
    There is increasing evidence for widespread occurrences of infection with Epidermodysplasia verruciformis-related human papillomaviruses, both in the general population and in immunosuppressed patients. In order to test for the prevalence of antibodies directed against the native L1 epitopes exposed on the surface of the virions, we have established an IgG-specific enzyme-linked immunosorbent assay with L1 virus-like particles of the Epidermodysplasia verruciformis-specific human papillomavirus 8 as antigen to screen 567 representative serum samples from the general population and immunosuppressed/dermatologic patients. Among healthy European donors (n = 210), 7.6% were found to be seropositive. In a group of renal transplant recipients (n = 185) the antibody prevalence was elevated to 21.1%, irrespective of the presence or absence of skin cancer. High positivity rates could be detected among (i) immunocompetent patients with nonmelanoma skin tumors (45.6%, n = 79) and (ii) Psoralene/UVA treated psoriasis patients (42.9%, n = 42). In contrast, anti-human papillomavirus 8-virus-like particle antibodies were found in only 6.8% of Hodgkin lymphoma patients (n = 44)

    Increased concentrations of both NMDA receptor co-agonists D-serine and glycine in global ischemia:A potential novel treatment target for perinatal asphyxia

    Get PDF
    Worldwide, perinatal asphyxia is an important cause of morbidity and mortality among term-born children. Overactivation of the N-methyl-d-aspartate receptor (NMDAr) plays a central role in the pathogenesis of cerebral hypoxia–ischemia, but the role of both endogenous NMDAr co-agonists d-serine and glycine remains largely elusive. We investigated d-serine and glycine concentration changes in rat glioma cells, subjected to oxygen and glucose deprivation (OGD) and CSF from piglets exposed to hypoxia–ischemia by occlusion of both carotid arteries and hypoxia. We illustrated these findings with analyses of cerebrospinal fluid (CSF) from human newborns affected by perinatal asphyxia. Extracellular concentrations of glycine and d-serine were markedly increased in rat glioma cells exposed to OGD, presumably through increased synthesis from l-serine. Upon reperfusion glycine concentrations normalized and d-serine concentrations were significantly lowered. The in vivo studies corroborated the finding of initially elevated and then normalizing concentrations of glycine and decreased d-serine concentrations upon reperfusion These significant increases of both endogenous NMDAr co-agonists in combination with elevated glutamate concentrations, as induced by global cerebral ischemia, are bound to lead to massive NMDAr activation, excitotoxicity and neuronal damage. Influencing these NMDAr co-agonist concentrations provides an interesting treatment target for this common, devastating and currently poorly treatable condition

    Multispecies virial expansions

    Get PDF
    We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs

    Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration

    Get PDF
    Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy

    The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism

    Get PDF
    Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process

    Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain

    Get PDF
    In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-β aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions. </p
    corecore